Complexity of Resolution of Parametric Systems of Polynomial Equations and Inequations

نویسنده

  • Guillaume Moroz
چکیده

Consider a system of n polynomial equations and r polynomial inequations in n indeterminates of degree bounded by d with coefficients in a polynomial ring of s parameters with rational coefficients of bit-size at most $\sigma$. From the real viewpoint, solving such a system often means describing some semi-algebraic sets in the parameter space over which the number of real solutions of the considered parametric system is constant. Following the works of Lazard and Rouillier, this can be done by the computation of a discriminant variety. In this report we focus on the case where for a generic specialization of the parameters the system of equations generates a radical zero-dimensional ideal, which is usual in the applications. In this case, we provide a deterministic method computing the minimal discriminant variety reducing the problem to a problem of elimination. Moreover, we prove that the degree of the computed minimal discriminant variety is bounded by $D:=(n+r)d^{(n+1)}$ and that the complexity of our method is $\sigma^{\mathcal{O}(1)} D^{\mathcal{O}(n+s)}$ bit-operations on a deterministic Turing machine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Real Solution Classification for Parametric Semi-Algebraic Systems

Real solution classification of parametric polynomial systems is a crucial problem in real quantifier elimination which interests Volker Weispfenning and others. In this paper, we present a stepwise refinement algorithm for real solution classifications of a class of parametric systems consisting of polynomial equations, inequalities and inequations. For an input system, the algorithm outputs t...

متن کامل

Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers

We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set of points obtained from the intersection of the component with a generic transverse affine subspac...

متن کامل

A Gröbner Free Alternative for Polynomial System Solving

Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial, and the parametrizations of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006